If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400+4x^2-80x^2=64x^2
We move all terms to the left:
400+4x^2-80x^2-(64x^2)=0
We add all the numbers together, and all the variables
-140x^2+400=0
a = -140; b = 0; c = +400;
Δ = b2-4ac
Δ = 02-4·(-140)·400
Δ = 224000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224000}=\sqrt{6400*35}=\sqrt{6400}*\sqrt{35}=80\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{35}}{2*-140}=\frac{0-80\sqrt{35}}{-280} =-\frac{80\sqrt{35}}{-280} =-\frac{2\sqrt{35}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{35}}{2*-140}=\frac{0+80\sqrt{35}}{-280} =\frac{80\sqrt{35}}{-280} =\frac{2\sqrt{35}}{-7} $
| 7w-3(4w=8)+11 | | 14x^2+20x+100=0 | | (x-753)/6+6236=7777 | | -2(5=6m)=16=-90 | | 98s^2+50=0 | | 14/x+30=2/x | | 9u^2=63 | | 9y-3=19y-2 | | (5x-535)/50=60 | | -2/3x-4=6 | | 2=-5-7x | | -16t^2-33t-16=0 | | 64x^2=-32x | | (3x+2)(x-2)=(x+6)(3x-8) | | -6x=-4x+15 | | 4y+3(y-1)=2(3y-4) | | X^2-28x+74=0 | | 64=-32x | | 2-4x=-3x+1 | | 8=1.5w-12+8,w | | 3^2x+3-3^x+2-3^x+1+1=0 | | 15x-1=3x-25 | | 5g=3=-12 | | 4(1+.05m)=7m | | 5g+3=12 | | 12=(4+w)w | | 2x2−36=x | | 6w+3=2w+23 | | (3x-17)=(4x-12) | | 2s+4=5(4-2s) | | 3+(2x+22)=x+17 | | 67-4=8(21/4s) |